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Motivation 
•  Planetary landing mission needs: 

–  Autonomy 
•  Robust to communication link failures and no delays 

–  Accuracy 
•  Sites of scientific interest 
•  Previously-landed assets: rover, astronauts, etc. 
•  Technical requirements about the area: illumination patterns, hazard presence, etc. 

•  On-board terrain sensor: optical camera 
ü  Lightweight, cheap, high TRL, passive (works from any distance) 
 
X  Needs illumination: OK for most landing missions 
X  2D-only image measurements: 

•  Many terrains are highly 3D near the ground (or even farther: asteroids) 
 

•  New orbital maps are very accurate (1m-resolution on LRO) 
–  Low-altitude absolute planetary navigation can increase accuracy! 
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Objective: Vision-based pinpoint landing navigation 
–  Rugged-terrain capability 
–  Low-altitude operations capability 



System Overview 

•  Initial position and estimate from previous phase 

•  Motion propagation with an Inertial Measurement Unit (IMU) 
–  Measures non-gravitational accelerations and angular rates 
ü  High-frequency estimation, continuous navigation when camera fails 
 

•  Matching of online image features with mapped landmarks 
ü  IMU biases estimated and error drift is corrected 
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State Of The Art 

•  Landmark radiometric signature (image patch, SIFT/SURF,…): 
X  Illumination-sensitive 
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•  Landmark geometric description: 
• Craters conic-invariant: only for crater landmarks 
• Landmark projection and nearest-neighbor matching: many outliers 
• Neighborhood description in rectified terrain plane: flat terrain assumption 

  è Goal: 3D-robust geometric method using non-specific landmarks 
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Proposal 
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Feature points 

Interpolated DEM 

Orbital Camera 

•  Proposal: 
1.  Online extraction of Harris feature points in the current descent image 
2.  Projection of the 3D map points onto the image plane estimated in the filter 
3.  Putative matching based on neighborhood geometry (2 methods) 

a.  Shape Context description 
b.  Generalized Hough Transform 

4.  Outliers removal using RANSAC 

3D points: on-board map 

•  On-board map generation (prior to the mission): 
Orbital image 

DEM 



Online extraction and projection 

•  Step 1: Online image feature extraction 
–  Harris corner detector 

•  Step 2: Orbital landmark projection 
–  On-board map 
–  Current camera pose estimated from the filter 
–  Known camera calibration model 

 è No flat world hypothesis! 
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Estimated camera pose 

Mapped landmarks 

Image plane 



Putative Matching 1: Shape Context 

•  Shape Context Signature 
–  Feature point characterized by the geometric distribution of its neighbours 

•  Minimum and maximum distances: br and pr 

•  Distance and polar angle 
•  Histogram signatures counting neighbours in each quadrant 

–  One-to-one signature comparison 
•  Distance criterion based on χ2 distance 
•  Selection cut for distances lower than a threshold 

è Set of promising matches: 
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Shape context signature (Pham et al., 2009) 
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Putative matching 2: Generalized Hough 
Transform 
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•  Principle: Find the best global 2D 
translation between online features 
and projected landmarks. 

 

1.  Each possible match between an online 
feature and a projected orbital match defines 
a possible 2D translation 

2.  Accumulate all translations 
a.  whose norms are below a threshold related 

to the estimated camera pose covariance 
b.  after quantization with a step related to the 

expected perspective distortion effects 

3.  Select the peak of the accumulator: it yields 
the estimated discrete translation 

4.  Shift the projected landmarks according to 
the estimated translation and match them 
with the closest descent point 

è Accept the match if the closest point is not too far 

image 58  pts extraits (+r), reproj (og), reproj corrigee (or), reproj ideal (oy)
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Ambiguous accumulator: not enough landmarks 

Successful accumulation  

image 0  pts extraits (+r), reproj (og), reproj corrigee (or), reproj ideal (oy)
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Outliers removal using RANSAC 

•  RANSAC: RANdom SAmple Consensus (Fischler et al., 1981) 
–  Outliers removal by fitting a model to experimental data 

•  Model: calibrated camera pose (Fischler et al., 1981) 
–  Closed-form solution from 3 matches 
–  4 possible solutions: that closest to the filter estimate is selected 
–  Full 3D-terrain capability 

•  Algorithm 
–  Inputs: (2D,3D) putative matches 

–  Outputs: (2D,3D) robust matches 
•  Camera model having most inliers 

•  Corresponding inliers è Fed to the filter 
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1. Select a random set s of 3 potential matches 
2. Compute the associated camera solution 
3. Determine the associated inliers 
4. If # {inliers} is larger than the previous maximum, store the inlier vector 
5. Back to step 1 until max. number of iterations is reached 



Summary 
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Extended Kalman Filter 

 

 
 

 

•  Filter state vector: 
–  Vehicle state 

•  Attitude quaternion, velocity and position vector 
•  IMU (gyroscope and accelerometer) biases 

–  Previous camera poses (through state management) 
•  Attitude quaternion and position of the camera 

è Allows to account for processing delays through state intercorrelation. 

•  System model propagation: inertial navigation 
•  Measurement model: landmark image projection 

•  zj : normalized image coordinates 
•  pc

clj : 3D coordinates 
•  nj: noise 
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Simulation environment 

•  Test Trajectory selected: Moonlanding approach phase 
–  Duration: 80 seconds, 2-km altitude and 65 m/s velocity at startup 
–  Guidance is based on that of Apollo LM 

 
•  Matlab Simulink IMU model calibrated to match performances of 

state-of-the-art space IMUs. 
 
•  Virtual terrain generated on PANGU 

–  Lunar-like DEMs 

–  Descent images generation 
•  Focal plane placed using true pose from simulator. 
•  512X512 8-bit image spanning 70 deg FoV 
•  Gaussian noise: m=0, σim = 1 intensity level 

–  LRO-like orbital images 
•  2.5 deg FoV, 50 km-altitude, 2048x2048 pixels, 8 bits 

•  20° azimuth illumination difference with descent sequence 
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Online descent image 

Orbital image 



Descent sequence 
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Matched Landmarks
Landmarks in the FoV

Matching performance comparison 

•  Shape Context vs. Generalized Hough 
Transform (GHT): 

–  Each is tuned empirically for best performance 
–  GHT matches more landmarks 
–  Matches are spread more widely in the image 

è More useful measurements for the filter 
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Visual phase Inertial phase 
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Shape Context method
Generalized Hough Transform method

•  200 GHT Monte Carlo runs 
-  3σ initial uncertainty: 1 deg, 10 m/s, 100 m per axis 

-  250 distributed online features 
-  2x4000-features maps (switch at 4005 sec) 

è Higher-density map for low altitude-matching  
-  GHT parameters: 

-  100-pixel neighboorhood zone 
-  10-pixel quantization step 

-  93 % runs converged (filter tuning for the 7% remaining) 

•  Shape Context vs. Generalized Hough 
Transform (GHT): 

–  Each is tuned empirically for best performance 
–  GHT matches more landmarks 
–  Matches are spread more widely in the image 

è More useful measurements for the filter 
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Monte Carlo results 

18 

All runs 

On-going work: decrease the number of diverging runs 
 è Include filter uncertainties in the voting process 

93% of the runs 



Summary 
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Conclusion 

•  2 contributions for geometric mapped landmark matching 
–  Generalized Hough Transform yields better results 

•  Extended Kalman filter structure 
–  Processing delays accounted for 

•  Preliminary validation on a lunar descent sequence at low altitude: 
–  Last absolute match at 45 m altitude. 
–  Promising to achieve pinpoint landing accuracy or aerial vehicle global navigation. 
–  3D-compatible: no flat world assumption 
 

•  Future work: 
–  Reduce 7% failures: include filter uncertainties into voting process. 
–  Orbit-to-touchdown trajectory, more illuminations, more 3D topographies. 
–  Include image scale in feature extraction for repeatability 

•  Test extractors taking scale into account: e.g. Harris-Laplace features. 
•  Test more specific features: e.g. craters 

–  Compare EKF with UKF and PF 
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Lunar South Pole Topography 
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Alternatives to EKF? 
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•  Measurement projection function ó highly non-linear 
•  EKF linearization for Kalman measurement update 

–  But important landmark prediction errors for typical planetary landing 
uncertainties… 

 

–  Measurement noise should be set in tens of pixels instead of a few. 
 è Less efficient measurements      è More matched points needed 

 
 
 

          Figure: 1024x1024 image mean linearization  
                                error for lunar approach phase 
 
 

 
 

                   UKF ? PF ? 


